Friction and Wear of Materials
Rabinowicz Free

Tribology of Polymeric Nanocomposites
Friction, Wear, Lubrication
Tribology of Polymeric Nanocomposites
Friction and Wear: From Elementary Mechanisms to Macroscopic Behavior
Friction and Wear of Materials: Fundamentals of Friction and Wear of Materials
Friction and Wear Transitions of Materials
Friction and Wear in Polymer-Based Materials
Handbook of Friction Materials and their Applications
Tribology: Friction and Wear of Engineering Materials
Friction and Wear of Ceramics
Friction and Wear of Metals
Wear Transitions of Materials
Handbook of Friction Materials and their Applications
Tribology: Friction and Wear of Engineering Materials
Friction and Wear of Polymers
Characterization of Tribological Materials, Second Edition
Friction, Wear, Lubrication in Materials and Surface Engineering in Tribology
Friction and Wear of Polymer Composites
Control of Machines with Friction
Engineering Tribology
Friction and Wear
Engineering Tribology
Tribology for Engineers
Wear
Tribology in Materials and Manufacturing
Industrial Tribology
Tribology of Ceramics and Composites
Micromechanisms of Friction and Wear
Polymer Tribology

Friction, Wear, Lubrication

Friction, wear, and erosion are major issues in mechanical engineering and materials science, resulting in major costs to businesses operating in the automotive, biomedical, petroleum/oil/gas, and structural engineering industries. The good news is, by understanding what friction, wear, or erosion mode predominates in a mechanism or device, you can take action to prevent its costly failure. Seeing Is Believing Containing nearly 300 photos of component failures, macro- and micrographs of surface damage, and schematics on material removal mechanisms collected over 50 years of tribology consulting and research, Friction, Wear, and Erosion Atlas is a must-have quick reference for tribology professionals and laymen alike. Complete with detailed explanations of every friction, wear, and erosion process, the atlas' catalog of images is supported by a wealth of practical guidance on: Diagnosing the specific causes of part failure, Identifying popular modes of wear, including rolling and impact, with a special emphasis on adhesion and abrasion Understanding manifestations of friction, such as force traces from a laboratory test rig for a variety of test couples Recognizing liquid droplet, solid particle, slurry, equal impingement, and cavitation modes of
erosion Developing solutions to process-limiting problems Featuring a
glossary of tribology terms and definitions, as well as hundreds of
visual representations, Friction, Wear, and Erosion Atlas is both user
friendly and useful. It not only raises awareness of the importance of
tribology, but provides guidance for how designers can proactively
mitigate tribology concerns.

Tribology of Polymeric Nanocomposites

This new book will be useful not only to practising engineers and
scientists, but also to advanced students interested in wear. It
reviews our current understanding of the influence of microstructural
elements and physical properties of materials (metals, polymers,
ceramics and composites) on wear. The introductory chapters describe
the relation between microstructure and mechanical properties of
materials, surfaces in contact and the classification of wear
processes. The following chapters are concerned with wear modes of
great practical interest such as grooving wear, sliding wear, rolling-
sliding wear and erosive wear. Our present understanding of abrasion,
adhesion, surface fatigue and tribochemical reactions as the relevant
wear mechanisms is discussed, and new wear models are presented. In
addition to extensive experimental results, sketches have been widely
used for clarifying the physical events.

Friction and Wear: From Elementary Mechanisms to Macroscopic
Behavior

This classic text discusses the use of advanced surface science
characterization techniques in friction, adhesive and abrasive wear,
boundary lubrication, contact fatigue, and other important failure
processes. Surface characterization of bearings, gears, seals, and
other manufactured rolling and sliding surfaces are increasingly
routine in advanced quality control of processes and in the
manufacture of precision components. This book is an indispensable
asset to scientists and engineers using tribological characterization
techniques. New content in this edition include: • four new figures to
illustrate real surface contact added to Chapter 1. • coverage of the
use of the Environmental SEM (ESEM) in examining wear of fiber glass
filled PTFE added to chapter 4. • new information on the wear of
ceramics added to Chapter 5. • updates for new analytical systems
added to Chapter 6. • coverage of Atomic Force Microscope (ATM) and
its usefulness in the field of nano-tribology, providing not only full
microtopography of surface roughness but also measurement of nano-
friction and nanohardness of surface films, added in a new Chapter 9.
• the 17 Appendices have been completely revamped with essential
information organized into convenient tables.

Friction and Wear
This title is designed to provide a clear and comprehensive overview of tribology. The book introduces the notion of a surface in tribology where a solid surface is described from topographical, structural, mechanical, and energetic perspectives. It also describes the principal techniques used to characterize and analyze surfaces. The title then discusses what may be called the fundamentals of tribology by introducing and describing the concepts of adhesion, friction, wear, and lubrication. The book focuses on the materials used in tribology, introducing the major classes of materials used, either in their bulk states or as coatings, including both protective layers and other coatings used for decorative purposes. Of especial importance to the tribology community are sections that provide the latest information on Nanotribology, Wear, Lubrication, and Wear-Corrosion: Tribocorrosion and Erosion-Corrosion.

Wear of Materials

In the past few decades, friction material engineering has become more sophisticated with many tests and techniques to investigate the properties of the materials and their counterparts before, during and after friction occurred. There has not been too much information available on the different raw materials used for friction materials. This book is more focused towards the raw materials that formulate the different friction materials. It explains about their main friction effects and material structure. Handbook of Friction Materials and Their Applications begins by explaining about different friction materials and how they can be used for brakes. It then goes onto explain the tribology of friction materials. Further out it discusses how different friction materials are formulated and produced. Noise and vibration are explained in a further chapter. The later part talks about how different raw materials can be used for friction materials, such as metals, carbon, organic and inorganic materials. Explains how different friction materials can be used for brakes Discusses the noise and vibration effects in friction materials Covers the raw materials that are used in friction materials.

Fundamentals of Friction and Wear of Materials

Friction and Wear of Materials

Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as "contact interaction of solids in relative motion." This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear.
values. The effect of the environment on friction and wear is also considered. Finally, the requirements, which must be fulfilled by the physicomechanical properties of the materials of which contacting bodies are made and which determine their behavior in moving contacts, are formulated. The book will be of interest to a wide circle of readers, e.g. engineers, designers, machine users, and research workers, working on the production of wear-resistant materials and working on the nature of friction and wear.

Friction, Wear and Wear Protection

Friction and Wear in Polymer-Based Materials discusses friction and wear problems in polymer-based materials. The book is organized into three parts. The chapters in Part I cover the basic laws of friction and wear in polymer-based materials. Topics covered include frictional interaction during metal-polymer contact and the influence of operating conditions on wear in polymers. The chapters in Part II discuss the structure and frictional properties of polymer-based materials; the mechanism of frictional transfer when a polymer comes into contact with polymers, metals, and other materials; and controlling the frictional properties of polymer materials. Part III is devoted to applications of polymer-based materials in friction assemblies. It covers composite self-lubricating materials and polymer materials for complexly loaded main friction assemblies. This work may prove useful to specialists interested in the problems of using polymer materials. It also aims to stimulate deeper research into the field of friction and wear in polymer-based materials.

IMPACT WEAR OF MATERIALS

Tribology : friction and wear of engineering materials

Friction and Wear of Ceramics

Friction and Wear of Materials

The second edition of a bestseller, this book introduces tribology in a way that builds students' knowledge and understanding. It includes expanded information on topics such as surface characterization as well as recent advances in the field. The book provides additional descriptions of common testing methods, including diagrams and surface texturing for enhanced lubrication, and more information on rolling element bearings. It also explores surface profile characterization and elastic plastic contact mechanics including wavy surface contact, rough surface contact models, friction and wear plowing models, and thermodynamic analysis of friction.
Friction and Wear Transitions of Materials

Integrating very interesting results from the most important R & D project ever made in Germany, this book offers a basic understanding of tribological systems and the latest developments in reduction of wear and energy consumption by tribological measures. This ready reference and handbook provides an analysis of the most important tribosystems using modern test equipment in laboratories and test fields, the latest results in material selection and wear protection by special coatings and surface engineering, as well as with lubrication and lubricants. This result is a quick introduction for mechanical engineers and laboratory technicians who have to monitor and evaluate lubricants, as well as for plant maintenance personnel, engineers and chemists in the automotive and transportation industries and in all fields of mechanical manufacturing industries, researchers in the field of mechanical engineering, chemistry and material sciences.

Friction and Wear in Polymer-Based Materials

Provides comprehensive information on the tribological aspects of advanced ceramic materials for all uses that require controlled friction and wear resistance. The text is a guide to altering the microstructure of ceramics to create optimum performance in sliding and rolling contact applications.

Handbook of Friction Materials and their Applications

The modern vision of the micromechanism of friction and wear is explored, from the examination of ideal and real crystal structure and adhesion properties to the dynamics of solid frictional interaction. The fundamental quantum-mechanical and relativity principles of particle interaction are considered as basis of friction micro-process examination. The changes in solid structure originated from the influence of different kinds of force fields are considered. The principal possibility of relativity effect manifestation by friction is explained. The critical state of friction – triboplasma – was studied. Structural peculiarities of triboplasma, the kinetics of its transformation during frictional interaction as well as the influence of plasma and postplasma processes on tribojunction friction characteristics and complex formation by friction were examined. The book addresses to tribology researchers.

Tribology

Friction and the interaction of surfaces can usually be felt at the scale of the contacting bodies. Indeed, phenomena such as the frictional resistance or the occurrence of wear can be observable with plain eye, but to characterize them and in order to make a prediction,
a more detailed understanding at smaller scales is often required. These can include individual roughness peaks or single molecule interactions. In this Research Topic, we have gathered a collection of articles representing the state of the art in tribology's endeavor to bridge the gap between nano scale elementary research and the macroscopic behavior of contacting bodies. These articles showcase the breadth of questions related to the interaction of micro and macro scale and give examples of successful transfer of insights from one to the other. We are delighted to present this Research Topic to the reader with the hope that it will further inspire and stimulate research in the field.

Friction, Wear, and Erosion Atlas

It is my ambition in writing this book to bring tribology to the study of control of machines with friction. Tribology, from the greek for study of rubbing, is the discipline that concerns itself with friction, wear and lubrication. Tribology spans a great range of disciplines, from surface physics to lubrication chemistry and engineering, and comprises investigators in diverse specialities. The English language tribology literature now grows at a rate of some 700 articles per year. But for all of this activity, in the three years that I have been concerned with the control of machines with friction, I have but once met a fellow controls engineer who was aware that the field existed, this including many who were concerned with friction. In this vein I must confess that, before undertaking these investigations, I too was unaware that an active discipline of friction existed. The experience stands out as a mark of the specialization of our time. Within tribology, experimental and theoretical understanding of friction in lubricated machines is well developed. The controls engineer's interest is in dynamics, which is not the central interest of the tribologist. The tribologist is more often concerned with wear, with respect to which there has been enormous progress - witness the many mechanisms which we buy today that are lubricated once only, and that at the factory. Though a secondary interest, frictional dynamics are not forgotten by tribology.

Friction and Wear of Ceramics

The proceedings collect invited and contributed papers from more than 150 scientists and engineers worldwide which provide an up-to-date overview of the current research on friction and wear, including new systematic approaches as well as innovative technical solutions.

Microstructure and Wear of Materials

This book introduces the basic concepts of contact mechanics, friction, lubrication, and wear mechanisms, providing simplified
analytical relationships that are useful for quantitative assessments. Subsequently, an overview on the main wear processes is provided, and guidelines on the most suitable design solutions for each specific application are outlined. The final part of the text is devoted to a description of the main materials and surface treatments specifically developed for tribological applications and to the presentation of tribological systems of particular engineering relevance. The text is up to date with the latest developments in the field of tribology and provides a theoretical framework to explain friction and wear problems, together with practical tools for their resolution. The text is intended for students on Engineering courses (both bachelor and master degrees) who must develop a sound understanding of friction, wear, lubrication, and surface engineering, and for technicians or professionals who need to solve tribological problems in their work.

Tribology: Friction and Wear of Engineering Materials

An ideal textbook for a first tribology course and a reference for designers and researchers, Engineering Tribology gives the reader interdisciplinary understanding of tribology including materials constraints. Real design problems and solutions, such as those for journal and rolling element bearings, cams and followers, and heavily loaded gear teeth, elucidate concepts and motivate understanding. The hallmark of this work is the integration of qualitative and quantitative material from a wide variety of disciplines including physics, materials science, surface and lubricant chemistry, with traditional engineering approaches. Reviewers have praised the coverage of: both elastic and plastic stresses at surfaces in contact; the mechanisms of friction, wear and surface distress, and wear; thick pressurized fluid films in both hydrostatic and hydrodynamic bearings; elasto-hydrodynamic lubrication; boundary lubrication mechanisms; dry and marginally lubricated bearing design; the design of rolling contacts and bearings.

Wear of Metals

Friction and Wear of Polymers

As with the previous edition, the third edition of Engineering Tribology provides a thorough understanding of friction and wear using technologies such as lubrication and special materials. Tribology is a complex topic with its own terminology and specialized concepts, yet is vitally important throughout all engineering disciplines, including mechanical design, aerodynamics, fluid dynamics and biomedical engineering. This edition includes updated material on the hydrodynamic aspects of tribology as well as new advances in the field of biotribology, with a focus throughout on the engineering
applications of tribology. This book offers an extensive range of illustrations which communicate the basic concepts of tribology in engineering better than text alone. All chapters include an extensive list of references and citations to facilitate further in-depth research and thorough navigation through particular subjects covered in each chapter. * Includes newly devised end-of-chapter problems * Provides a comprehensive overview of the mechanisms of wear, lubrication and friction in an accessible manner designed to aid non-specialists. * Gives a reader-friendly approach to the subject using a graphic illustrative method to break down the typically complex problems associated with tribology.

Characterization of Tribological Materials, Second Edition

Friction, Wear, Lubrication

Tribology covers the fundamentals of tribology and the tribological response of all types of materials, including metals, ceramics, and polymers. The book provides a solid scientific foundation without relying on extensive mathematics, an approach that will allow readers to formulate appropriate solutions when faced with practical problems. Topics considered include fundamentals of surface topography and contact, friction, lubrication, and wear. The book also presents up-to-date discussions on the treatment of wear in the design process, tribological applications of surface engineering, and materials for sliding and rolling bearings. Tribology will be valuable to engineers in the field of tribology, mechanical engineers, physicists, chemists, materials scientists, and students. Features Provides an excellent general introduction to the friction, wear, and lubrication of materials Presents a balanced comparison of the tribological behavior of metals, ceramics, and polymers Includes discussions on tribological applications of surface engineering and materials for sliding and rolling bearings Emphasizes the scientific foundation of tribology Discusses the treatment of wear in the design process Uses SI units throughout and refers to U.S., U.K., and other European standards and material designations

Materials and Surface Engineering in Tribology

Tribology for engineers discusses recent research and applications of principles of friction, wear and lubrication, and provides the fundamentals and advances in tribology for modern industry. The book examines tribology with special emphasis on surface topography, wear of materials and lubrication, and includes dedicated coverage on the fundamentals of micro and nanotribology. The book serves as a valuable reference for academics, tribology and materials researchers, mechanical, physics and materials engineers and professionals in related industries with tribology. Edited and written by highly
knowledgeable and well-respected researchers in the field Examines recent research and applications of friction, wear and lubrication Highlights advances and future trends in the industry

Tribology

Tribology in Materials and Manufacturing - Wear, Friction and Lubrication brings an interdisciplinary perspective to accomplish a more detailed understanding of tribological assessments, friction, lubrication, and wear in advanced manufacturing. Chapters cover such topics as ionic liquids, non-textured and textured surfaces, green tribology, lubricants, tribolayers, and simulation of wear.

Friction and Wear of Polymer Composites

Tribology of Polymeric Nanocomposites provides a comprehensive description of polymeric nanocomposites, both as bulk materials and as thin surface coatings, and provides rare, focused coverage of their tribological behavior and potential use in tribological applications. Providing engineers and designers with the preparation techniques, friction and wear mechanisms, property information and evaluation methodology needed to select the right polymeric nanocomposites for the job, this unique book also includes valuable real-world examples of polymeric nanocomposites in action in tribological applications. Provides a complete reference to polymer nanocomposite material use in tribology from preparation through to selection and use. Explains the theory through examples of real-world applications, keeping this high-level topic practical and accessible. Includes contributions from more than 20 international tribology experts to offer broad yet detailed coverage of this fast-moving field.

Control of Machines with Friction

Tribology is emerging from the realm of steam engines and crank-case lubricants and becoming key to vital new technologies such as nanotechnology and MEMS. Wear is an integral part of tribology, and an effective understanding and appreciation of wear is essential in order to achieve the reliable and efficient operation of almost any machine or device. Knowledge in the field has increased considerably over recent years, and continues to expand: this book is intended to stimulate its readers to contribute towards the progress of this fascinating subject that relates to most of the known disciplines in physical science. Wear - Materials, Mechanisms and Practice provides the reader with a unique insight into our current understanding of wear, based on the contributions of numerous internationally acclaimed specialists in the field. Offers a comprehensive review of current knowledge in the field of wear. Discusses latest topics in wear mechanism classification. Includes coverage of a wide variety of materials such as metals, polymers, polymer composites, diamonds, and
diamond-like films and ceramics. Discusses the chemo-mechanical linkages that control tribology, providing a more complete treatment of the subject than just the conventional mechanical treatments. Illustrated throughout with carefully compiled diagrams that provide a unique insight into the controlling mechanisms of tribology. The state of the art research on wear and the mechanisms of wear featured will be of interest to post-graduate students and lecturers in engineering, materials science and chemistry. The practical applications discussed will appeal to practitioners across virtually all sectors of engineering and industry including electronic, mechanical and electrical, quality and reliability and design.

Engineering Tribology

This book deals with the new and now-expanding field of friction, wear, and other surface-related mechanical phenomena for polymers. Polymers have been used in various forms such as bulk, films, and composites in applications where their friction, wear resistance, and other surface-related properties have been effectively utilized. There are also many examples in which polymers have performed extremely well, such as in tyres, shoes, brakes, gears, bearings, small moving parts in electronics and MEMS, cosmetics/hair products, and artificial human joints. Around the world, much research is currently being undertaken to develop new polymers, in different forms, for further enhancing tribological performance and for finding novel applications. Keeping in view the importance of tribology of polymers for research and technology as well as the vast literature that is now available in research papers and review articles, this timely book brings together a wealth of research data for an understanding of the basic principles of the subject. Contents: Bulk Polymers: Adhesion and Friction of PolymersTribophysical Interpretation of Polymer Sliding MechanismsScaling Effects in Tribotesting of PolymersBiopolymer TribologyReinforced Polymers: Wear of Polytetrafluoroethylene and PTFE CompositesMechanical and Tribological Behaviour of Polymers Filled with Inorganic Particulate FillersThe Sliding Wear of Polypropylene and Its BlendsBrake Friction MaterialsPolymer Films: Mechanical Properties of Thin Polymer Films Within ContactsAFM Testing of Polymeric Resist Films for Nanoimprint Lithography and other papers

Readership: Engineering professionals working on polymers for designing bearing materials; managers and researchers in materials laboratories; graduate students in the area of materials/tribology.

Keywords: Polymer; Tribology; Wear; Friction; Scratching

Features: Covers, for the first time, all areas of polymer tribology (bulk, films, composites, and applications) in one comprehensive bookDescribes new applications for polymers, such as in microscale and nanoscale machines where surface properties or tribology play a crucial role in the durability and performance of the machineCompiles various works in this area into one volume, and includes opinions or contributions from some of the world's leading authorities in this fieldReviews: "This book brings together a vast wealth of research data
Friction and Wear

The area of tribology deals with the design, friction, wear and lubrication of interacting surfaces in relative motion. Polymer nanocomposite materials are increasingly common and offer remarkable improvements in the friction and wear properties of both bulk materials and coatings. This book gives a comprehensive description of polymeric nanocomposites, both as bulk materials and as thin surface coatings, and their behavior and potential use in tribological applications. It provides the preparation techniques, friction and wear mechanisms, properties of polymeric nanocomposites, characterization, evaluation and selection methodology. It also provides various examples of application of polymeric nanocomposites.

Friction, Wear, Lubrication

Engineering Tribology

Friction and Wear of Materials Second Edition Written by one of the world's foremost authorities on friction, this classic book offers a lucid presentation of the theory of mechanical surface interactions as it applies to friction, wear, adhesion, and boundary lubrication. To aid engineers in design decisions, Friction and Wear of Materials evaluates the properties of materials which, under specified conditions, cause one material to function better as a bearing material than another. Featured also are thorough treatments of lubricants and the sizes and shapes of wear particles. This updated Second Edition includes new material on erosive wear, impact wear, and friction. Professor Rabinowicz's book will be especially welcomed by mechanical and design engineers, surface scientists, tribologists and others who design, produce and operate products, machines and equipment which involve friction and its effects.

Tribology for Engineers

Wear of Metals deals with the mechanisms underlying the wear of metals such as brass, cast iron, and aluminum-silicon alloys. Topics covered
include surface topography, contact of solids, and friction, along with the effect of sliding and rolling resistance. Fretting, wear under rolling contact, and the friction and wear of polymers are also discussed. Comprised of 27 chapters, this volume begins with an overview of adhesion, types of wear, and friction and wear experiments. The following chapters explore surface topography and the contact (single and multiple) of solids; molecular theory of friction and wear; running-in wear and abrasive wear; and surface contaminants.

A n oxidational hypothesis of wear is then presented, and the phenomenology of metal transfer involving steel on brass and steel on steel is described. The remaining chapters consider sliding in surfaces and subsurfaces; the effect of temperature and speed on friction and wear; the role of solubility and crystal structure in friction and wear; and wear of brass. The two principal effects associated with rolling, namely, the slip or creep and energy loss, are also examined. Examples of tribological components are given. This book should be of value to undergraduates and research workers in the fields of metallurgy and engineering.

Wear

Chapters describe friction and wear in general, emphasizing not theory, but examples of materials behavior, variables which affect transitions, and considerations in tribotesting materials. Annotation copyright Book News, Inc. Portland, Or.

Tribology in Materials and Manufacturing

The result of Kenneth C. Ludema's 35 years of teaching and research, Friction, Wear, Lubrication: A Textbook in Tribology presents a broad view of the many aspects of tribology. All major aspects of this discipline are included, from mechanical to materials to chemical to mechanics. Ludema's key research areas - marginally lubricated wear and friction - will be of special interest to readers who would like to find reliable and useful data on friction and wear rates. Written primarily as a text/reference, this informative volume describes how to solve design problems in friction and wear. By applying close and informed observation of presently operating tribological systems, along with careful design of simulative tests, readers can develop their own conclusions of tribological results. This book is intended to bring everyone solving problems in friction and wear to the same understanding of what is (and what is not) involved in this exciting field. Seniors and graduate students, as well as practicing engineers employed in a wide range of industries will find this book to be an essential and practical resource.

Industrial Tribology

covers the fundamentals of tribology and the tribological response of all classes of materials, including metals, ceramics, and polymers. This fully updated and expanded book maintains its core emphasis on friction and wear of materials, but now also has a strengthened coverage of the more traditional tribological topics of contact mechanics and lubrication. It provides a solid scientific foundation that will allow readers to formulate appropriate solutions when faced with practical problems, as well as to design, perform and interpret meaningful tribological tests in the laboratory. Topics include the fundamentals of surface topography and contact mechanics, friction, lubrication, and wear (including tribo-corrosion), as well as surface engineering, selection of materials and design aspects. The book includes case studies on bearings, automotive tribology, manufacturing processes, medical engineering and magnetic data storage that illustrate some of the modern engineering applications in which tribological principles play vital roles. Each chapter is complemented by a set of questions suitable for self-study as well as classroom use. This book provides valuable material for advanced undergraduates and postgraduates studying mechanical engineering, materials science and other technical disciplines, and will also be a useful first reference point for any engineer or scientist who encounters tribological issues. Provides an excellent general introduction to friction, wear, and lubrication of materials Acts as the ideal entry point to the research literature in tribology Provides the tribological principles to underpin the design process Through systematic coverage of the subject and appropriate questions, develops the reader’s understanding and knowledge of tribology in a logical progression.

Tribology of Ceramics and Composites

Providing a useful summary of current knowledge on the friction and wear properties of composite materials, this book fills the gap between publications on fundamental principles of tribology and those on the friction and wear behavior of metals and polymers. Detailed coverage is given of: the fundamental aspects of tribology in general and polymer composites in particular; the effects of the microstructure of composites on friction and wear behavior under different external loading conditions; and the problem of the control of friction and wear behavior in practical situations. Although emphasis is on polymer composites associated with bearing-type applications, part of the book is also devoted to the friction and wear of metal-based composites and rubber compounds. The data are represented in the form of 277 figures, diagrams and photographs, and 68 tables. The author index covers more than 670 references, and the subject index more than 1,000 keywords. The book will be of particular interest to: those involved in research on some aspects of polymer composites tribology (material scientists, physical chemists, mechanical engineers); those wishing to learn more methods for solving practical friction or wear problems (designers, engineers and ...
technologists in industries, dealing with selection, reprocessing and application of polymer engineering materials); and teachers and students at universities.

Micromechanisms of Friction and Wear

This book covers the area of tribology broadly, providing important introductory chapters to fundamentals, processing, and applications of tribology. The book is designed primarily for easy and cohesive understanding for students and practicing scientists pursuing the area of tribology with focus on materials. This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. The description of the wear micromechanisms of various materials will provide a strong background to the readers as how to design and develop new tribological materials. This book also places importance on the development of new ceramic composites in the context of tribological applications. Some of the key features of the book include: Fundamentals section highlights the salient issues of ceramic processing and mechanical properties of important oxide and non-oxide ceramic systems; State of the art research findings on important ceramic composites are included and an understanding on the behavior of silicon carbide (SiC) based ceramic composites in dry sliding wear conditions is presented as a case study; Erosion wear behavior of ceramics, in which case studies on high temperature erosion behavior of SiC based composites and zirconium diboride (ZrB2) based composites is also covered; Wear behavior of ceramic coatings is rarely discussed in any tribology related books therefore a case study explaining the abrasion wear behavior of WC-Co coating is provided. Finally an appendix chapter is included in which a collection of several types of questions including multiple choice, short answer and long answer are provided.

Polymer Tribology

This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. With important introductory chapters on the fundamentals, processing, and applications of tribology, the book then examines in detail the nature and properties of materials, the friction and wear of structural ceramics, bioceramics, biocomposites, and nanoceramics, as well as lightweight composites and the friction and wear of ceramics in a cryogenic environment.

Copyright code: 8fa77da80ad12ec51f2700a25c64bb90